Mining Subjective Knowledge from Customer Reviews: A Specific Case of Irony Detection

نویسندگان

  • Antonio Reyes
  • Paolo Rosso
چکیده

The research described in this work focuses on identifying key components for the task of irony detection. By means of analyzing a set of customer reviews, which are considered as ironic both in social and mass media, we try to find hints about how to deal with this task from a computational point of view. Our objective is to gather a set of discriminating elements to represent irony. In particular, the kind of irony expressed in such reviews. To this end, we built a freely available data set with ironic reviews collected from Amazon. Such reviews were posted on the basis of an online viral effect; i.e. contents whose effect triggers a chain reaction on people. The findings were assessed employing three classifiers. The results show interesting hints regarding the patterns and, especially, regarding the implications for sentiment analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subjectivity Classification using Machine Learning Techniques for Mining Feature-Opinion Pairs from Web Opinion Sources

Due to flourish of the Web 2.0, web opinion sources are rapidly emerging containing precious information useful for both customers and manufactures. Recently, feature based opinion mining techniques are gaining momentum in which customer reviews are processed automatically for mining product features and user opinions expressed over them. However, customer reviews may contain both opinionated a...

متن کامل

Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)

As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...

متن کامل

Customer behavior mining based on RFM model to improve the customer relationship management

Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...

متن کامل

A comparison between semi-supervised and supervised text mining techniques on detecting irony in greek political tweets

The present work describes a classification schema for irony detection in Greek political tweets. Our hypothesis states that humorous political tweets could predict actual election results. The irony detection concept is based on subjective perceptions, so only relying on human-annotator driven labor might not be the best route. The proposed approach relies on limited labeled training data, thu...

متن کامل

Use - centric mining of customer reviews

Prior research involving customer reviews focuses on individual consumers and/or specific products. By contrast, use-centric mining aggregates over all reviews for all products in a category. Specifically, we induce a category-specific ontology from reviews and use that ontology to automatically extract product features and uses. We then use frequent-item sets to match product uses with product...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011